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transitions: application to a two-layer Ising film 
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AbstracL Within the framework of the mnsfer matrix formalism, a variational method 
is elaborated with a consmint related U, the fundamental mle of the wmlation length 
near a critical point. me method is applied lo a two-layer ferromagnetic film, made 
of two horizontal king planes interacting through a venia l  wupling. m e  d i a l  curve 
of the model, as well as the wmla t ion  length above and near T, are alculated. 'Ihe 
L..LI*mI "\p""L"L Y ""LLllllLY as,LW 1,111 Y l r  up's*'c" L I I " Y I U S I W I " I I I I  -lx "=&"S. r", 
the two particular values of the vertical wupling, for which there are numerial estimates 
of T, through series analysis or the Monte Carlo method, an esential agreement with 
these estimates is found, Analytical ap res ions  are given in the weak and srrong veRical 
wupling regimes. Non-perturbalive aspects in the weak regime are analysed and a 
singularity, of q u a r e  mot me, at zero vertical wupling is found. Also discussed is 
the Vansition f" the weak lo the strong vertical wupling regime and its physical 
manifestation through the rapidity with which the wmlation length diverges at T,. 

..,4*2,,", -"-"~". _. .... ":"-A ""-- ..i.L .L̂  -_^*_A *.. Â:...-..-:---, -.--. .".I..^ c-_ 

1. Introduction 

An alternative variational procedure for the analysis of systems with an infinite num- 
ber of degrees of freedom, has been proposed in a previous paper 111. This procedure 
ai;om us io 
Tc, along a row or column for the anisotropic two-dimensional square king model 
[l]. A further elaboration of the above approach and its application to a two-layer 
ferromagnetic king film is reported in this work. We obtain results concerning the 
critical curve and the correlation length above and near the critical temperature for 
this model. 

The two-layer Ising film which we consider, is made of two interacting isotropic 
square lattices. The model is given by the Hamiltonian 

emctiy, in a simpie andiytiai Wd~, mrreiation iengih above 

m n  

H = -4 ccc si , js i+, , j  + s i , j s i . j t t  + u i . j u i + l , j  + ui,jui,jtt) 
i=l  j = 1  

( i . i j  

J ,  iS a horizontal isotropic coupling, while J ,  is the vertical coupling. Periodic 
conditions on the two horizontal planes are imposed. 

03054470~~15423+24$07.50 @ 1992 IOP Publishing Ltd 5423 



5424 L Angelini ef al 

When J2 = 0, the model is exactly soluble. In this case the Hamiltonian If, = 
H [ J z  = 01 describes two uncoupled king planes or, equivalently, two free fermionic 
fields [2,8,19]. The partition function is then given by the Onsager solution. However, 
when Jz # 0,  the model becomes non-trivial and quite interesting both from a 
practical (with regard to the properties of the thin magnetic films) and a theoretical 
point of view, with relation to the problem of two interacting fermionic fields. In this 
case an exact solution is lacking. 

in  tne current paper our attention is focused on the eiiects of rhe 'coupiing' J2, 
as this parameter is varied. The non-perturbative aspects for small J2 are particularly 
analysed, as well as the strong coupling behaviour. This type of analysis is made near 
the critical point, within the framework of a proper variational procedure. 

The general scheme of our approach S described in section 2. The variational 
method is constrained in such a way as to take into account the fundamental role 
of the correlation length when T is near T,. In section 3 we introduce a trial 
effective Hamiltonian in order to describe the probability distribution for the spin 
configurations on a vertical section of the layer. Then, the probability distribution on 
two adjacent vertical sections induced by the transfer matrix, is analysed in section 4. 
These two distributions are related to the classical numerator and denominator of 
the Rayleigh-Ritz (RR) quotient. The basic equation of our approach is given in 
section 5; !t is based on the requirement that the above two distributions have the 
Same correlation length. A residual parameter of the effective Hamiltonian S fixed 
in section 6, through a variational procedure. Then we give, in this section, the 
critical curve and the correlation length for T near and above T,. In section 7 
we consider the weak and strong coupling regimes and we give, in these cases, the 
analytic expressions of our results. We obtain a square root singularity at J2 = 0. 
Furthermore we discuss the physical manifestation of a transition from the weak to 
the strong coupling regime. Some comments are made in the last section. 

We note furthermore that, within the general approach described in section 2, the 
king films are the starting point for studying model with d 2 3 [l]. 

2. Constrained variational method near the critical point 

In this section we give an outline of the general framework of our analysis of the 
model (1.1). The approach which we introduce is based on the transfer matrix 
formalism. 

Let us denote by ( u , ~ )  = (s l  ,..., s,;uI ,..., U,) a spin configuration on a 
vertical section of the layer along a column of the horizontal planes. We call C ,  such 
a type of section. The symmetrized transfer matrix L associated with (I.l), which 
connects C ,  with an adjacent C:, is given by 

with 
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and 

( i  = 1 , Z ) .  J i  ICi = - kT 

We will be. interested in the thermodynamic limit n,m -+ CO. Let A, (which is 
related to the free energy) be the highest eigenvalue of L and U ](U, T )  the corre- 
sponding eigenvector. If we consider the probability P ( u ,  T )  of a spin configuration 
(U, T )  on a section E,,, regardless of the configurations of all other sections, we have 
[WI 

where ( W l ,  U,) =E,,, @:(U, T ) .  A consequence of (2.2) is that the pair correlation 
function of our model, involving two spins of a section E,, is equal to the pair 
correlation function associated with the distribution *:(U, r). It follows that the 
singularity of A, at the critical temperature T, is strictly connected to the appearance 
of long range order in the principal eigenvector Q , of L.  

Let us write P(u,T) in a Boltzmann form through an effective Hamiltonian 
hiu,  T )  (ii which we absorb a minus signj 

where Z (  E,) =E,,, 

h ( o , T )  = AiC(s;si+i  + % % + I )  + A z C s i u i  + A,C(si"i+i  + u i s i t i )  

We can write h(u, T )  in the form [5] 

m m m 

i= l  i=1 i = l  
m m 

+ A, c s i u i s i + l u i + i  + A, X(S,S~+) + uiui+z) + . . . (2.4) 
i = 1  i=1 

where the expansion is organized according to the range and the number of spins 
involved in a coupling. The effective coupling parametrs Ai are functions of the 
temperature Tor  of K ,  and K2. 

Now, according to the Frobenius-Perron theorem, Q l ( u , r )  is unique (up to 
constant) and positive. Then, it follows from (2.2) that 

q1(u,  r )  = eh('*r)/Z (2.5) 

Z(E,) = ( Q l ? Q l ) .  (2.6) 

and 

lt h .mahsl  tn " d n r  s k n  thn nrnhDhilihr P l -  T.m' 7 ' )  of 2 spic afiflgrntbfi 
I, Y ..,.,I", L" ..,..".".-.I U."" ",- r."""., .... > ,", , ,I , . , 
(U, r) , (u' ,T')  on two adjacent sections C, and C:, regardless of the configurations 
of all other sections. A generalization of (2.2) gives 111 
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where 

Ihe effective Hamiltonian h ( u ,  T; U', T ' )  of the lattice C, UC; can be easily deduced 
from (21) and (2.5). It follows from (2.7) that h(u,r ) ,  or the coupling parameters 
Ai, are determined by the marginality condition 

p ( U , T ; U ' , T ' )  = P ( U , T ) .  (2.9) 
U',+ 

After the determination of h ( u , r ) ,  A l  k given by 

Of course (2.9) and (2.10) do not reduce the complexity of our problem. However 
we will refer us to them in our discussion of appropriate approximate procedures. 

In order to have a problem that can be dealt with, we will consider approximate 
descriptions x(o, 7) of the effective interaction h(u ,  r), where only a finite number 
of couplings are present. ?b !ix the ideas, we will take, as an example 

m m - 
h ( U , T )  = x, =JJsisi+l + uiui+l) + A, c s i u i  

i=l  i= l  
m m 

+ A13c(sizli+l + U i S i + l )  + A1i4csiuisi+lui+l. (2.11) 
i = l  i= l  

Formally, the structure of x(u, 7) is obtained by truncating the expansion (2.4). 
However the couplings xi will be, in general, different from the parameters Ai 
(i= 1 , . . .,4). As a matter of Edct, with the fixed structure (2.11), the actual values of 
the Ai will depend on the particular procedure by which (2.9) will be approximately 
satisfied. 

Let us introduce 

and the probability distributions 
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A particular recipe, by which the parameters ii can be determined, is given by the 
requirement to obtain the best approximation to A,. This is the standard variational 
method, which starts from the rigorous inequality 

I 

- < A i  Z N  (2.13) 
2, 

valid for evety choice of the xi ,  and considers 

This approach gives preference to the actual numerical value of A,. As a matter 
of fact, we are more interested to its analytic structure. So it i., useful to see the 
meaning of the variational method from the point of view of our previous general 
discussion. 

Let us denote by (. . .jD and (. . .)N the expectation values calculated through 
FDb(o, T )  and pN(c, T ;  U', T ' ) ,  respectively. The necessaly condition for a maximum 
of z.v/zD 

I 

a z N - o  ( i = l ,  ..., 4) (2.15) 

leads to [SI 

(2 16) 
(SiSi+I)D = (SiSi+l)NI (s iui+I)D = (S iui+l )N 

(Siui)D = (S iui )N? (SiuiSi+lui+l)D = (SiuiSi+lui+I)N 

@Y T m e t t y  ( u i u i t l ) D  = (Uiui+l )N,  ( % i S i t l ) D  = ( u i S i t l ) N ) ,  
So we see that the full condition (2.9), which leads to the equality, on C,, of all 

the standard variational method, by an approximate marginality requirement which 
involves only a finite number of short distances and low order correlation functions. 

A consequence of the above remark is that (2.14) can be a reliable procedure, if 
we are far from the critical point, since then large distances and high order correlation 
functions have a negligible role, so that we have an effective reduction of the full set 
of conditions imposed by (2.9). If, on the other hand, we are near Tc, there is no 
trace in (2.14) or (2.16) of the physical and mathematical mechanism of a second- 
order phase transition. Large distance correlations on C, and C, U C: having the 
same behaviour, are out of the content of (2.16). 

However, when T is near Tc, an alternative procedure for the determination of 
the parameters Xi can be formulated, which allows us to overcome the difficulties 
of the standard variational method when a large number of degrees of freedom are 
effectively involved. 

First of all, in order to be sure that we are analysing the model for T near T, 
(as a matter of fact we will consider T > Tc), we do not take the xi  as completely 
free, but impose a constraint in such a way to be sure that Z ( U , T )  leads actually 

the mrreladnn filnrrions assncia!cr! with P ( O j  7) and P ( C j  T ;  d j  T ' ) ;  i5 rep!acea_* in 
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to large distances correlations on E, and E, U E:. After this, the crucial problem 
is to reduce the full condition (29) to some equations involving only the relevant 
quantities associated with a second order phase transition. 

From the analytic point of view, the critical point is characterized by a singularity 
in A,  at T,. A consistent description of this situation, when we consider the ratio 
zN/BD with an effective Hamiltonian 71 having large distance correlations, would 
require that the singular points of 2, and ZD be coincident. Now the relevant 
quantity which is responsible of the singular behaviour is the correlation length. Then, 
on the basis of the above natural analytic requirement, we are led to the marginality 
condition that FD( U, T )  and FN( 0, T ;  U', T ' )  have the same correlation length. Due 
to the fundamental and unique role of this quantity when T is near Tc, we sum up, 
with the correlation length equality (CLE) [l], a relevant aspect of (2.9) for T near 

in generai, some resiauai parameters, wnicn we caii Am, wiii not be &ea by the 
CLE equation. f i r ther  independent marginality conditions are then needed. How- 
ever, having satisfied the crucial large distance condition, we can come hack to the 
variational inequality (2.13) and fix the residual zm through 

s u p  v.  Z N  (2.17) 

In this way we arrive at a constrained maximum problem, with the CLE imposed on 
the numerator 2, and denominator 2, of the classical Rayleigh-Ritz variational 
method (RRVM). So, some kind of short range marginality conditions, compatible with 
the CLE equation, will be also satisfied. 

This approach will be I completely developed in the following sections. After 

addressed the full condition (29), that is the correlation length along avertical section 
E,, which allows us to obtain the critical curve of our model. 

As is well known, there are other variational approachs in statistical mechanics, 
which do not make use of the transfer matrix formalism. A classical procedure, which 
allows one to obtain closed form approximations, is the cluster variation method (CVM) 
(see, for example, [6 ,7  and references therein). However also in this approach we 
have a situation like that of the unconstrained RRVM; in principle the CVM approx- 
imations are reliable in the absence of long range correlations [7]. As a matter of 
fact, the Kikuchi version of the CVM, in the case of the two-dimensional square king 
model, gives the same approximate critical point as the standard RFWM [6]. On the 
other hand, in this case, the CLE equation allows us to obtain the exact co~~elat ion 
length and then the exact critical point 111. 

3. The trial effective Hamiltonian on a vertical section of the layer 

Our explicit calculations are made by introducing, on a section E,, the trial effective 
Hamiltonian 

Tc. I 

I 

{Zk} 'D 

.I_̂ _I -.--... :..,..:-- ..c .I_̂ " I  ....,"..a".- .I_̂ .̂.̂ ...:... .̂  ... !-:..I. ...- I.".." ^^^^".:"I,., 
LIIC U C L C I I ~ ~ U ~ ~ U V L L  VI LLK A,, wc L~L.UMLG LUG quaun~y LV WLULU WG imvc wiriruaey 

m 

(3.1) 
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which is modelled on the original Hamiltonian H, except for the effective coupling 
2B,  which takes into account in the simplest way of the new types of couplings 
resulting from the summation over the spin configurations on all the other sections. 
A preliminary analysis of the case B = 0 was made in 111. We will see that the 
effective coupling B will have an important role. 

As in (212), we associate with & ( U ,  T )  the vector 

G,,(O, T )  = eX@J)/2 ( 3 4  

and the probability distribution 

(3.3) 

By making use of the transfer matrix formalism, we give the correlation length 5 
of FD, as a function of the parameters A, B and C. 

The function $7, x ( u , ~ )  can be written in terms of a transfer matrix 
-l(sl,s21s;,s;) which connects two adjacent segments of the vertical section E,. 
We have the 4 x 4 matrix 

r(sl,s21s;,s;) = (Sl. s21tlS;,S;) 

- - eco'd2exp(2A(sls', + s2s!J + 2B(sls; + s , ~ ~ ) ) e ~ ~ : ~ : .  (3.4) 

Since t mmmutes with the parity operator, its eigenvectors have a definite parity. As 
a consequence t splits into two independent 2 x 2 block% The eigenvalues associated 
with the positive parity are given by 

ezc cosh 4 ( A  + E) + e-," cosh 4 (A - B )  
i {[ezc cosh 4 (A + B )  - e-zc cosh 4 (A - E)]' + 4)'" 

2e2Csinh4(A+ B )  (3.6) 

2e-ZC s i n h 4 ( A - E ) .  . 

(3.5) 

while those of negative parity are 

and 

(3.7) 

We will call A, the highest eigenvalue with positive panty (this is given by (3.5) with 
the plus sign), and A, the highest eigenvalue with negative panty. In the region 
T > Tc, the correlation length 5 is given by [SI 

1 A1 - = log - 
E A 2  

(3.8) 

For T < Tc, we must have A, = A,. 
Now, a ferromagnetic behaviour of our trial Hamiltonian demands that 

A, = 2eZC sinh 4(A + B ) .  . (3.9) 
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Furthermore we require that A be positive and such that 

A > 181. (3.10) 

From (3.7) and (3.9) we deduce also 

2 C t  4 8  > 0. (3.11) 

For T > T, but near Tc, A, and A, must be nearly degenerate. From (3.5) and 
(3.9) it follows that this happens when A or 8, or both are very large and positive. 
However (3.10) demands that, in any case, A must be large and positive, with 

(3.12) 

The effective coupling A is the relevant parameter of our trial Hamiltonian Ih,(u, T ) .  

It is useful to introduce the following notation 

(3.13) 

We have then 
I 

AI _ _  A1 

A2 A, 
--I 

- 1 + w4z4 + y4(w4 + z4) + {[l t w4z4 - y4(w4 t z4)I2 t 1 6 y 4 ~ 4 r 4 } 1 / 2  - 
~ ( i  - ~ ~ 2 4 )  

(3.14) 

For T near and above Tc, z is small and positive, with 

lim z = O  
T - T ~  

and 

(3.15) 

4. The induced probability distribution on two adjacent vertical sections 

Now, according to the general discussion of section 2, we l ix attention on the proba- 
bility distribution 
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which is induced on two adjacent sections E, an E;, by the uial effective Hamiltonian 
h t ( m , r ) .  

From (2.1) it follows that with this distribution is associated the 16 x 16 transfer 
matrix 

I 

x q.:,s;, sj, 5 4 )  ( 4 4  

with 
- 
t(sl,s2,ss,s4) = exp (+(c + t1 ( , ) (~1s2  + 8 3 ~ 4 )  + ~ K , ( S ~ S ,  + s2s,)) 

We will analyse the properties of e which are relevant for our approach. 
First of all, by introducing a proper orthonormal basis, the operator e splits in 

the direct sum of two 8 x 8 matrices, which we call e+ and e - .  These give the 
eigenvectors of t with parity + I  and -1, respectively. 

LLICLI, UUI ~ L U V I G I I L  ij to aiciiiate the iiigiiest eigeiieaiue of C+, which we mii q, ,  
and the highest eigenvalue of e - ,  which we call q? From these we can deduce zNt 
and the correlation length on C, U C; associated with (4.1). 

(which are related to the exchange of s, 
with s2 and of s, with s,, or (s1 ,s2)  with (s3,s4)) we have that q ,  is the highest 
eingenvalue of a 5 x 5 matrix, while q2 is the highest eingenvalue of a 2 x 2 matrix. 

--- .̂._---La-.- , 

By exploiting the other symmetries of 

It is useful to write 

~ , , ~ = e x p ( 4 ( A +  B ) + 2 C + I i 2  - t4K1)6 , , , .  (4.3) 

By making use of the notation (3.13) and of the following definition 

(4.4) 
- e - 2 K ~  - e-Kz/2 

1 -  2 -  

we obtain ;iz in the form 

;i2 = q 1 -  2 U l W 2 Z 2 ) ( 1  + u 1 ( w z ) 2 +  v1(yu2)2(w2+ U l Z 2 )  + [ ( I  + Vl(Wz)’- ( Y V ~ ) ~ V ~ ( W ~  + ~ 1 2 ~ ) ) ~  + ~ ~ ( Y V ~ V ~ Z W )  2 ] 112 } 

(4.5) 

The most difficult part of the calculations is the determination of ;il which is the 
highest eigenvalue of the 5 x 5 Hermitian matrix h,, given by 

h , ,  = 1 + ulw 2 4 4  z 

h, ,  = 2 v , ( ~ ~ y w z ) ~  h , ,  = 2u ,u2ywz( l  -I- U , W ~ Z ~ )  

h,, = u l h l ,  h2, = h,, h,, = q h , ,  h,, = v:v24y4(w4 + u:z4)  (4.6) 

h,, = u;y2h, ,  

h,, = h,,/ul 

h , ,  = 2 ( u , ~ z ) ~  h,, = 2 ( ~ , u ~ y w z ) ~  

h,, = u:h, ,  

h,, = Z ~ ~ ( v ~ y ) ~ w z ( w ~  + v lz2]  h,, = h,,/u: 

h,, = Zh,, + + ~ ~ f * ) ( 1  + v I w 2 z 2 )  
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However, since we are interested in T above and near Tc, where z is small and 
positive (see (3.15)), we can calculate fj,, in an almost analytic way, by making use of 
the standard perturbation theory. This leads to an expansion of ;i; in powers of z2 

f j ,  = 1 + a1z2 + a2z4 + a3z6 + a$ + .  . ’  (4.7) 

where the mefficients ai  are functions of w , ~ , u l , u z .  We will see that, in order to 
develop our approach, we need at least terms of order of z‘. Except a, and a2? 
the other coeffi&ena are given by cumbersome analytic expressions, which have been 
determined by making use of ‘Mathematical [9]. 

From (4.5) we deduce easily an analogous expansion of f j 2  

;i2 = 1 + blza + b2z4 + b,z6 + b4za + . . . 
It tums out that b, = al.  We have, as in (3.16), 

(4.9) 

For z2 # 0,  we have a splitting of this degenerate eigenvalue which, however, appears 
at the order z4. 

5. The spectral gap equality for T near Tc 

We call log ql/q2 and log Xl/X2 the spectral gaps of the transfer matrices e and t. 
The basic equation of our approach is the spectral gap equality, which we write in 
the form 

For T > T,, (5.1) is equivalent to the correlation length equality for the distributions 
P=: (U?T)  and F f G ( ~ : ~ ; ~ ’ t ~ ’ ) .  For T < Ti: we must have & / A 2  = n,/qz = 1: 
according to the mechanism of the spontaneous symmetry breaking. It is useful to 
write (5.1) in the form 

- 

We will study this equation for small values of z. 
From (4.9), (4.10) and a l  = b,, we deduce 

3 = 1 + r1z4 + r2z6 + r3z’ +. . . . 
6 2  

We make an analogous expansion for il/i2. From (3.14) we have 

(5.3) 

(5.4) 
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We note that the expansion of ii fi2 involves only powers of t4. On the other 
hand, in (5.3) there generally appear odd powers of z2 ,  after the term 7p4. Then, 
before imposing (5.2), we implement the trial Hamiltonian Lt(u, T) by requiring 
that, at least for T near Tc, Fjl/Fjz and il/i2 have the same analytic behaviour as 
functions of our relevant parameter A. So we are lead to the equation 

7 2 ( W , Y , v , , v z )  = 0. (5.5) 

It is useful to see the meaning of (5.5), with regard to the discussion in section 2 
Starting from the induced distribution pN,(u,  T; U',  T') given by (4.1), we come back 
to the section E, and consider the marginal Hamiltonian % ( U ,  T) given by 

Now, as it was expected, z ; ( u , r )  has a general structure different from that 
of Lt(u ,r ) .  There are in Z $ ( U , T )  many couplings that are absent in LI(u,r ) .  
Therefore the equation Li(u,r) = Zt(u ,7) ,  equivalent to (2.9), cannot be satisfied. 

we can describe h$(u ,  T) through an equivalent effective Hamiltonian 71; having 
the same spectral gap (log cl/Fj2) and a small number of effective couplings. Now, 
if we impose (5.5), the equation (5.3) can be reproduced up to the order zB through 
an lh: eff having the Same structure of Ll(u ,r ) .  

In order to analyse (5.5), which can be considered as a constraint between the 
parameters B and C, it is useful to introduce the quantity E such that 

lenoth u.'p are "pa: T However, as !ong_as we fix the attentin!! on the mrre!atir?n .--.L)... c ,  

e = y w  with O < E <  1 (5.7) 

due to (3.11). Then, (5.5) can be written in the form of a cubic equation in the 
variable w2.  It turns out that there exists one and only one solution of this equation 
which is positive and continuous for E ,  u l ,  v2 E (0.1). The value of the parameter 
w ,  so determined, wiii be denoted by w'. it is a function of E ,  v,, v2, for which we 
have 

0 < W ' ( E , V 1 , U z )  < 1 .  (5.8) 

Some typical behaviour of U*, as a function of E ,  is shown in figure 1 .  

(5.5) cannot be satisfied. 

condition (5.2). From (5.3). (5.4) and (5.5) we obtain 

We can see now the role of the coupling constant E. Without this parameter, 

Having implemented our trial Hamiltonian L t ( u , ~ ) ,  we proceed to impose the 

f4[CO(E,Vl,V2)+ C 2 ( E . v l l v 2 ) z 4 1  = 0 (5.9) 

where 

C O ( E , U 1 , U Z )  = T , ( W * , E , V 1 , V 2 )  - U 1 ( W * , E )  

C2(& 9 U1 2 v2) = 7 3 ( w * ,  E 1 VI 1 u2) - %(W*  1 E ) .  
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0 
0 0.2 0.4 0.6 0.8 1 

c 

Figure 1. The solution w' of (5.5) as a function of c ,  for p = 1. 

It is useful to consider (5.9) as an equation for z. As we see, we always have the 
solution zor = 0 (that is A = +m). However (5.9) can also have a solution, which 

In order to state the existence of q,,,, we make use of the parameters K = K ,  
and p = K2/K,. Then, we consider the ci as functions of E ,  ii, p. As we see from 
(5.9), the existence of zds is controlled by the quantity c,,(E, lC,p).  
- Now, for fixed p, c , (c ,K,p)  has the following proierty: there exists a value 
K ( p )  of K, which is unique, such that for IC > K ( p )  co(€ ,K ,p )  is nega- 
tive for every E E [0,1]; for IC < x ( p ) ,  but near R ( p ) ,  there is an interval 

that for E E I (  IC, p ) ,  c ~ ( E ,  IC, p )  is positive, while for E I( K, p )  is negative. The 
ei(  K, p )  ( i  = 1 , 2 )  are the unique solutions of the equation 

aii zds, zds & p i t i v e  and 

I ( K , p )  = ( E ~ ( I ~ , P ) , E ~ ( ~ < , P ) )  of E, with 0 < ~ , ( K , P )  < EI(K,P) < 1, Such 

CO(&, I C ,  p )  = 0 (5.10) 

for h' < T ( p ) .  The difference ~ ~ ( l i ,  p )  - E 2 ( I i .  p )  goes to zero as K - K ( p ) ,  so 
that 

- 

Then, for K near and below r ( p )  and E E I ( K , p ) ,  c ~ ( E ,  K , p )  is positive and 
small. 

For fixed p, it can be mncluded that there a unique set S in the (]<,E) 
plane, where c ~ ( E ,  h', p )  is as small as we want (positive or negative). We can Write 
S = I ,  x I,, where 1, is an interval of values of K which is a neighbourhood of 
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K ( p )  , while I ,  is an interval of values of E , which is a neighbourhood of e. A 
typical behaviour of eo(&, K , p )  is shown in figure 2, while typical regions in the 
( K , e )  plane, where eo(€,  K , p )  is positive, with the boundary determined by the 
e i ( K , p ) ,  are given in figure 3. 

- 

0.0050 

K:O.310 
0.09:: 

-0.0050 

- 0.0015 

- 0.0100 

--,-0.0025 

0 0.5 1.0 
z F 

I K =  0.312 

~ 0 0.5 1 .o 

F@m 2. ?he behaviour of eo in (5.9), BS a function of c, for p = 1 and three values 
of K ,  which include R(1) = 0.311. 

1.2 ' I 

5 

Flgure 3. The domains in Ihe ( c ,  K )  plane, lor three values of p. bounded by Ihe E 

and A' axis and by the mnlinuaus lines, where e. iS positive. The dashed line breaks 
the mntinuous curves into two branches, which give the solutions CI and cz of (5.10). 

Now, (5.2) can be satisfied by small values of z, only if (K, E )  E S. We can say 
that for ( I C ;  E)  E S: we are in a neighbourhood of (or Kc).  Furthermore we have 
that c2(e, K, p )  is distinct from zero at the point (K(  p ) ,  T). In fact it turns out that 
c2c = c 2 ( P , r ( p ) , p )  is finite and negative. This function of p is given in figure 4. 

So we can conclude that there is a point ( x ( p ) , F )  in the (Ii-,&) plane, which 
is unique, such that there is a neighbourhood 3 of ( r ( p ) , + )  where (5.2) can be 
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Wm-4 The memdent c k  of (5.9), as a function of p, when mlculated at e = Z and 
K = K ( p ) .  

satisfied by small values of z, which can be obtained through (5.9). Furthermore 

solution given by z,,(E, K, p )  = 0 . This type of solution exists also for K < x(p), 
if e I(K, p ) .  However for IC < '7T(p), there is also a positive small solution 

fn. I( \ F( n\ nnrl ( W ='I c 7 ( 5  0) hir nnlv "ne m-rentihle (i P nnn-nenntive\ 
I"L , A. , v ,  ".... ,.., -, -, ,".<, .."" ""., "..- ..--r..."." ,-.". ..".. .."6"...-, 

(5.12) 

provided E E I( IC, p ) .  
From the previous results we deduce that for IC > F ( p ) ,  we are in the ordered 

phase, so that Kc < r ( p ) .  For IC < r ( p ) ,  the hnd of phase of our system is 
related to the value of the parameter E .  If E I( IC, p )  we are again in the ordered 
phase, while if E E I( IC, p )  we are in the disordered phase. 

As we see the spectral gap equality gives a right framework for the analysis of a 

for K < R ( p ) ,  we have to for E .  The variational method allows us to complete our 
analysis within the above framework 

secasd Cree: phrse t:r-asities. Emcw, is order !e Cbt2k 2s Ils2mbigeus desaipties 

6. The critical curve and the correlation length, above and near T,, along a vertical 
seftion 

We come back to the RR quotient of section 2 which, for our trial Hamiltonian, is 
given by 
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For K < f f ( p ) ,  we consider the sup of this quantity, with respect to the residual 
parameter E not fixed by the spectral gap equality. This is a constrained variational 
procedure with equality constraints given by (5.5) and (5.2). It is equivalent to some 
marginality condition at short distances, but not to the full set of short distance 
equations in the first line of (2.16). 

Now, for K < x ( p ) ,  but near x(p), we can write 

where z * ( E ,  K , p )  is the non-negative solution of (5.9). This equation is obtained by 
expanding ijl/il in powers of z2 and by taking the leading term. 

So we see that the sup of q l / A l  automatically selects the solution zds(e, K , p )  
given by (5.12), so that 

The last sup gives for IC < f f ( p )  a strictly positive value to z * ( E ,  IC, p )  and it 
WIICIG LUG iiimimum s arramed. %'e ;G fx i", a .*̂ . ."%pie of ~ , .LA ' 

denote this values by E * (  K, p ) .  Wr IC < R(p), but near R( p) ,  we can write 

So, from the above procedure we deduce that, for h' < r ( p ) ,  we are in the 
disordered phase, with z having the positive value zds(&*(K, p ) ,  IC, p )  and such that 

Then we conclude that the critical point is given by 

K,  = z ( p ) .  (6.8) 

Furthermore, for IC below and near Kc, we obtain, from (3.8), (3.14) and (5.4), 
the correlation length c( IC, p )  along a vertical section 

where only the leading term has been taken into account. and Z is the value of w* 
at E = F. 

It can be verified that, if the parameters z or A are unconstrained and we 
consider the sup of q l / A l  when they are freely varied, the maximum is attained 
always for values of z which are not small. The standard unconstrained variational 
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method, giving preference to regions where z is not small, is incompatible with the 
mathematical mechanism of a second order phase transition [3] and, as a consequence, 
with the CLE condition in the critical region. On the other hand, it can also be verified 
that, in the set 7, each of the short distance conditions in the first line of (2.16), 
cannot be satisfied separately. 

We give in table 1 some values of K c ( p )  predicted by (6.8). In figure 5 we give 
also the critical curve, expressed as an equation 

(6.10) 

where the critical value of the vertical coupling is considered as a free parameter in 
the range (O,+oo).  

Iltbk 1. Numerical values of the critical p i n t  K,(p), predicted by (6.8). for w e r a l  
values of D. 

P K c  

0.0 0.440687 
0.2 0.380650 
0.4 0.353656 
0.6 0.334150 
0.8  0.320901 
1.0 0.311067 
2.0 0.278453 
4.0 0.246777 

0 2  " " '  
0 0.4 0 8  1.2  1.6 2 2.4 2.8 

e,. 

Figure S. ?he critical CUIW K,, = f(K2c) of the two-layer king film, obtained f" 
(6.8). 

If we denote by 

K:=z = -ilog(fi- 1 )  = 0.440687 
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the critical p i n t  of the two-dimensional isotropic Ising model, we obtain from (6.8) 

Kd=2 
lim f( KZc) = IC:=' lim f(K,,) = (6.11) 

Kse-0 Kz,-tm 

in accord with the expected rigorous results. 
Besides these Limiting values, correctly given by our approach, there are no ng- 

orous results about the critical curve of a two-layer Ising film. Numerical estimates 
of the critical temperature have been obtained in the two particular cases p = 1 and 
p = 2. The last case corresponds to periodic conditions in the vertical direction. It 
is useful to make a comparison between our predictions and these estimates. 

In the case p = 1, that is K, = IC, = IC, by analysing the high-temperature 
series expansion of the susceptibility through the standard ratio or Pad6 approximant 
methods [lo], the following value is obtained 

( t a n h K &  = 0 . 3 0 2 O f 6 .  (6.12) 

There is also, for p = 1, a result based on the Monte Carlo calculation of the 
magnetization [ll],  which gives 

( tanh  KJMC = 0.2980. (6.13) 

We have a small discrepancy between the two estimates, whose origin has not been 
clarified. It has been argued that the uncertainty in the series calculations is bigger 
than that quoted in (6.12) [ll]. For p = 1, our constrained variational approach gives 

( t anh  KJCv = 0.30141 (6.14) 

which agrees completely with the series estimate. 

T, deduced from the expansion of the susceptibility [lo] 
In the other case p = 2, that is K, = 2K, = 2 K ,  there is only the estimate of 

( tanhKc)SE = 0 . 2 6 9 2 z k l l  (6.15) 

while F C  QbGk 

( t anh  K,),, = 0.271 47. (6.16) 

If we were sure of the uncertainty reported in (6.15), then we have a discrepancy, 
but very small (- 0.4%), between the two calculations. It would be interesting to 
see what kind of result the Monte Carlo approach gives in this case. 

By making use of (5.12). the correlation length t ( I C , p ) ,  given by (6.9), can be. 
written in the form 

) ( I C  < K,) (6.17) 
1 . 4 9 + 2 ~ ( 1  -9) m= 1 - .E4 

with e'( K, p) given by (6.5). 

zero linearly, so that we obtain 
Now, for fved p, as K goes to Kc,  we have that c , , ( ~ ' ( K , p ) ,  K , p )  tends to 

(6.18) 
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for K below and near Kc,  where uc is a constant which depends on p. From (6.18) 
it follows that the critical exponent v, which describes the singular behaviour of ( 
near K,, is given by 

v =  1 (6.19) 

in accord with the expected two-dimensional value which is exactly known [SI. 
The above result raises a problem if there is some contact of our approach with 

the renormalization group (RG) method [U]. Eventually, a proper comparison could 
be made with the phenomenological renormalization [13] where, in the absence of a 
magnetic field, only a thermal field is considered. As a matter of fact, we note that in 
our analysis the parameter z has the role of a thermal field, the critical point being 
given by the equation .z = 0. Moreover, if we refer to the effective Hamiltonians 
on C, and E, U Cl ,  we can argue that .z = 0 (that is A(TJ = 00) gives also the 
condition for a fixed point of the renormalization aansformations, according to the RG 
treatment of the one-dimensional Ising model [14]. However, no scale factor related 
to RG transformations does appear in our approach. Then, on the one hand, we have 
an equation (i.e. (5.1)) for the thermal field, on the other hand the link between this 
quantity and the correlation length is obtained through a further equation (i.e. (6.9)). 

Coming back to (6.18), we see that the divergence of c( I ( ,  p )  at K,, is controlled 
also by the amplitude uc, which can be deduced from (6.17). This quantity, considered 
as a function of IC2,, is given in figure 6 As we see, we have a sharp maximum 
of uc for a particular value K;, of Kc, with K;c Y 0.201. This behaviour of uc, 
predicted by our approach, is related to a transition from the weak to the strong 
coupling regime, which will be discussed in the next section. 

d 0 4  

0 , l  
0'15 i 
0.05 1 .... 

0 0 4  0 8  1 2  1 6  2 7" 2 8  

Flyre d The amplitude uc of Ihe "elation length, as a function of K 2 , .  

0 

K,. 

7. The weak and strong coupling regimes 

A relevant aspect of our approach is that, in the two regions of weak or strong vertical 
coupling, the analysis can be made in a complete analytical way and the results can be 
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given by simple expressions. In the following we will call simply coupling the vertical 
coupling IC, which is associated with the interaction between two king planes or two 
fermionic fields. 

In the strong coupling regime we obtain for the critical curve 

= 0.220343 + 0.207 107e-2K’c - 0.161 165e-4K’c t 

while, in the weak regime, we have 

2 5 1 4 -  172 
K2, + . . . 8 448 

K,, = f ( K2c) = IC:=’ - 

= 0.440687 - 0.153842&- 0.40841K2, + .. . . (7.2) 

From the last equation it follows that there is a singularity at zero coupling, which 

We note that, if we give the critical temperature as a function T,(J,) of the 
is predicted to be of square mot type. 

vertical coupling and write, for small J,  

where + is the shift exponent [15,16], we obtain that, in our approach, + = 2. On the 
other hand, on the basis of the generalized homogeneity postulate [16], the behaviour 
near J ,  = 0 can be described in terms of a crossover exponent 4, which is associated 
with a crossover temperature. It can be argued that 4 = +. Renormalization group 
arguments [17,18] give support to this equality and allow us to obtain, as can also be 
deduced from dimensional considerations, 4 = 7 = 1.75 (the susceptibility exponent 
of the two-dimensional square king model). 

As we see in (7.1), the behaviour of the strong coupling expansion is very different, 
being given in terms of very different analytic functions. As a consequence, we ran 
expect that there is a value of IC,, around which a transition occurs between the 
strong and weak coupling regimes. The problem is how to characterize this transition 
and what its physicai implication is. 

If we look at the critical curve, which is a smooth monotonous decreasing function 
of Ifzc, there is no signal of such a transition. The situation is different if we analyse 
the behaviour of the effective coupling parameters of our trial Hamiltonian Iht(o, T). 
We fvc the attention on the critical point, where A -+ +m, and denote by B, and 
C, the values of B and C at this point. In the strong coupling regime we have 

= IS.>? +0.138959-3.084405e-2K’c+ . . .  (7.3) 

= K,, + 0.094 113 2 + 0.071 0678e-2K1‘ + . . . . (7.4) 

We see that, at the critical point, for large values of the coupling IC,, between 
the two horizontal planes of our model, the parameters 2B, and 2C,, which describe 
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the effective vertical coupling between the two horizontal lies of a section E”, have 
nearly the same value of Ifzc. There is only a small additive renormalition effect. 
In this respect, the strong coupling regime exhibits a simple behaviour. On the other 
hand, for small K,,, with 

v, = log(1- 9)  
we obtain 

231 332 + 95 829f i  dK+ 76 832 K2c -t vo 
392 

2Bc = -- + 
2 
= 0.613974 + 0 . 6 4 9 8 2 4 K -  4.774764K2, + ... (7.5) 

and 

6 4 8 3 d  - 130 784 
K2, + . . . 5&19 + 3 4 )  

196 a+ 38416 
ZC, = v, + 

= - 1.22795 + 0.32539&+ 3.165755K2, + . . . (7.6) 

Again there appears the square root singularity at KZc = 0, But we have a further 
relevant phenomenon, which makes the weak regime more complex and interesting. 

First of all we note that, for sufficiently small values of K,,, the effective vertical 
coupling 2 C, involving pairs of nearest-neighbour spins, becomes antiferromagnetic, 
while the other vertical coupling 2 B,, involving the next-nearest-neighbour spins, 
remains ferromagnetic. ks a consequence some kind of frustration appears near 
K,, = 0. However the ferromagnetic component is dominant, in the Sense that, for 
K,, # 0, we have always 

ZC, + 48, > 0 0.7) 
in agreement with (3.15), so that the global effective interaction between the two 
horizontal lines of a section E, 

m m 

2x9, c(siui+l+ uisi+1) + 2Cc x8i.i 
i=1 i=1 

is ferromagnetic. 

one, is the finite value of B, and C, as Kzc - 0 The second aspect of (7.5) and (7.6), which is related in some way to the first 

2Bc(0 )=  lim 2 B , =  - Ii 2 
JC2,-0+ 
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so that, when the two horizontal planes become uncoupled, the net effective interac- 
tion energy between the two horizontal lines of a section E", tends to zero. We can 
say that the effective vertical coupling of longer range, 2B,, is always ferromagnetic 
and remains finite as Kzs  -+ Ot, due to some hysteresis mechanism. This fact, how- 
ever, forces the other effective coupling 2Cc to become antiferromagnetic, in order 
to have a vanishing effective interaction energy when ICzc tends to zero. The math- 
ematical origin of this phenomenon is the equation (5.5), which cannot be satisfied 
,"I w = I (ur'l, w U = up 

From the analysis of the effective parameters, a physical picture emerges, which 
is quite different for the weak and strong coupling regime. It is very interesting, then, 
to determine where and how the transition between the two regimes occurs. In the 
figures 7(a) and 7(b)  we give 2Bc and 2Cc as functions of K2c. Both curves show 
dearly an upper and a lower branch associated with the strong and weak regimes, 
respectively. The transition from the upper to the lower branch happens in a very 
steep way, around the point K;, Y 0.220, where both the derivatives of 2CJ K2<)  
and of 2Bc(IC2,) get their maximum value. We see also that the transition, which 
looks like a smoothed jump, starts from the point K& U 0.270 where C, is zero. 

Fa- . - 1 ,.I.̂* :" D - n\ 

U' 
N 0.8 

j b j  J 

-0.8 

, -~1:: -1 .2 0 0.1 0.2 0.3 0.4 0.5 K. 0.6 

Figure 1. ?he effective mupling parameters 25, (a) and 2Cc (b)J at the uitical point, 
BS functions of KsC.  

Now we note that, in the interval where the behaviour of both 2 B, and 2Cc 
indicates the above transition from the weak to the strong coupling regime, we have 
also the point K;c where U< gets its maximum. This maximum is an imitation of a 
mechanism analogous to the divergence of the correlation length at the critical point. 
It refers, however, to the rapidity U< with which the correlation length diverges at 
K,. This further phenomenon of the appearence of the maximum, provides us with 
a physical means through which, in principle, the transition from the weak to the 
strong coupling regime can be detected and located. 

For small values of IC2,, uc is given by 

3 + a +  J W  
uc = - 

32 12544 

(7.10) = 0.137944+ 1 . 0 4 6 8 3 6 - k  
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while, in the strong coupling regime, we have 

= 0.27465 - 0.516 1321~2,e-2K2c + 0.101 961e-2KZc + . . . . (7.11) 

We note that, if we take initially K, = 0, we deduce from the equation [SI 

$ = 2 ( K ' - K )  (7.12) 

that U," = 1/4. Here to = ((K2 = 0) and e-2K' = t a n h  IC.  
On the other hand, from (7.10) we obtain 

lim uc 0.138 # U,". 
K>,-O+ 

(7.13) 

This result is a physical manifestation of the finiteness of the effective parameters 
E,  and C, when K2r .. tends to zero, as expressed by the limits (7.8). 

8. Conclusions 

The approach proposed in this paper allows us to obtain quite reliable results which, 
on the one hand, are under control from the analytical point of view, and on the other 
hand are carriers of interesting qualitative physical pictures. This is a consequence of 
the particular rote of the eigenvector Q1(u,7)  of the transfer matrix, on which we 
have focused our attention. From the point of view of quantum field theory Q1(u,  T )  

has the rote of the vacuum state. So our results on the effective parameters B, and 
C, can be useful with regard to the problem of the non-perturbative aspects of the 
structure of the vacuum state. 

n y,,p,Ca, LI."LLI(ILI".I "L "1- ..d"YY...L, Yl "". Uyy.Y".,.. ....L -- -.,- "..".V6V'Y yL - 
cedure followed in the low-energy quantum physics, where simple effective potentials 
(harmonic oscillators, double wells, . . .) are introduced, in order to obtain a good 
description of the low part of the spectrum. As a matter of fact we consider in this 
paper, through Z * ( U , T ) ,  a kind of effective potential of the simplest form, having 
the property to reproduce the energy gap between the ground state and the first 
excited state. However, it would be relevant to have, besides the heuristic arguments 
developed in this paper, a more rigorous basis with some control on the results. We 
will be faced with this problem in future work. 

For T > Tc, besides the correlation length it would be interesting to calculate also 
the other important physical quantities, like the heat capacity and the susceptibility. 
With regard to the latter quantity, we have to introduce a small external magnetic field 
and? as a consequence. we need a modification of our trial Hamiltonian. The same 
procedure is required for T < Tc, if we want also to calculate the magnetization. 

However, the heat capacity could be determined approximately through the second 
derivative, with respect to T, of the log of the RR quotient (6.1), which gives an 
approximation to the free energy. But, even if 5, and 1, are singular at the same 

A -h.*c:n-l .r-t:.mt:.m nf +ha ml:-hilihi nf nnnmsrh mn hn thp nnnlnnnlx 
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point, we obtain a poor approximation to the free energy near the critical p in t .  
In fact, from (6.3) and (6.8) we see that we would obtain a free energy whose 
singular part does not satisfy the scaling relation - ( l /c)d [12]. The Rayleigh-Ritz 
approximation to the bee energy, while allowing us to get stability for K < X ( p )  
with respect to the residual parameter E ,  seems incompatible with the full content of 
the scaling hypothesis. 

In order to obtain a reliable heat capacity we need an improvement upon the 
RR quodent which we have considered. In principle, if we consider the Hamiltonian 
~ ; ( u , T )  given by (5.6) and the vector 
- 

I 

& [ u , T )  = exp(h:(u,T)-  f L l ( u , ~ ) )  a ( L $ ~ ~ ) ( ~ , T )  (8.1) 

the ratio 

would lead to an improved calculation of the free energy [19]. However, we have to 
check that the numerator and denominator in (8.2) have the same correlation length. 
This problem can be avoided if we consider an intermediate step. Let us write (5.6) 
in the form 

with 

Now, to the extent that %(U, T) is effectively described by zl(u, T )  as far as we are 
mncerned with spin configurations having long range correlations, we are led to infer 
from (8.3) that 

(8.4) 

-..IA ha n ---a - rn i r+nn+  - I m s l m + i ~ n  nf +La &an nn~.m.z ..rhc.n T ;r ..e.-* rP 
WY," "C a ,,,".L CVIIDWLLI.. C(..C",OL."L, "1 L..C Y I I  *L.I,bJ, ....I.. 1 U ,.IO. J C .  Gf 
course, the numerator and the denominator in (8.4) have the same correlation length. 

This and the other problems mentioned above, as well as the m e  of higher 
dimensions, will be investigated elsewhere. 
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