IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Constrained variational approach to second order phase transitions: application to a two-layer

Ising film

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 5423
(http://iopscience.iop.org/0305-4470/25/21/006)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.59
The article was downloaded on 01/06/2010 at 17:26

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

1. Phys. A: Math. Gen. 25 (1992) 5423-5446. Printed in the UK

Constrained variational approach to second order phase
transitions: application to a two-layer Ising film
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Sezione di Bari, italy
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Abstract. Within the framework of the transfer matrix formalism, a variational method
is elaborated with a constraint related to the fundamental role of the correlation length
near a critical point. The method is applied to a two-layer ferromagnetic film, made
of two horizontal [sing planes interacting through a vertical coupling. The critical curve
of the model, as well as the correlation iength above and near T are calculated. ‘The
critical exponent » obtained agrees with the expected two-dimensional eaci value. For
the two particular values of the vertical coupling, for which there are numerical estimates
of T through series analysis or the Monte Carlo method, an essential agreement with
these estimates is found. Analytical expressions are given in the weak and strong vertical
coupling regimes. Non-perturbative aspects in the weak regime are analysed and a
singularity, of square root type, at zero vertical coupling is found. Also discussed is
the iransition from the weak to the strong vertical coupling regime and its physical
manifestation through the rapidity with which the correlation length diverges at Tc.

1. Introduction

An alternative variational procedure for the analysis of systems with an infinite num-
ber of degrees of freedom, has been proposed ina previous paper [1] This procedure
atlows us fo obtain CdeL[ly, ina Slmpl(: d[ldty[l(.dl way, the correlation I.Cl'lgt[l above
T., along a row or column for the anisotropic two-dimensional square Ising model
[1)- A further elaboration of the above approach and its application to a two-layer
ferromagnetic Ising film is reported in this work. We obtain results concerning the
critical curve and the correlation length above and near the critical temperature for
this model.

The two-layer Ising film which we consider, is made of two interacting isotropic

square lattices. The model is given by the Hamiltonian

H=- 122(5'1 irng i iSien %% %Y G0)
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J, i a horizontal isotropic coupling, while J, i the vertical coupling. Periodic
conditions on the two horizontal planes are imposed.
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When J, = 0, the model is exactly soluble. In this case the Hamiltonian H, =
H{J, = 0] describes two uncoupled Ising planes or, equivalently, two free fermionic
fields [2, 8, 19]. The partition function is then given by the Onsager solution. However,
when J, # 0, the model becomes non-trivial and quite interesting both from a
practical (with regard to the properties of the thin magnetic films) and a theoretical
point of view, with relation to the problem of two interacting fermionic fields. In this
case an exact solution is lacking.

In the current paper our attention is focused on the effects of the ‘coupling’ J,,
as this parameter is varied. The non-perturbative aspects for small J, are particularly
analysed, as well as the strong coupling behaviour. This type of analysis is made near
the critical point, within the framework of a proper variational procedure.

The general scheme of our approach is described in section 2. The variational
method is constrained in such a way as to take into account the fundamental role
of the correlation length when T is near T,. In section 3 we introduce a trial
effective Hamiltonian in order to describe the probability distribution for the spin
configurations on a vertical section of the layer. Then, the probability distribution on
two adjacent vertical sections induced by the transfer matrix, is analysed in section 4.
These two distributions are related to the classical numerator and denominator of
the Rayleigh-Ritz (RR) quotient. The basic equation of our approach is given in
section 5. It is based on the requirement that the above two distributions have the
same correlation length, A residual parameter of the effective Hamiltonian is fixed
in section 6, through a variational procedure. Then we give, in this section, the
critical curve and the correlation length for T near and above T.. In section 7
we consider the weak and strong coupling regimes and we give, in these cases, the
analytic expressions of our results. We obtain a square root singularity at J, = 0.
Furthermore we discuss the physical manifestation of a transition from the weak to
the strong coupling regime. Some comments are made in the fast section.

We note furthermore that, within the general approach described in section 2, the
Ising films are the starting point for studying model with d > 3 [1].

2. Constrained variational method near the critical point

In this section we give an outline of the general framework of our analysis of the
model (1.1). The approach which we introduce is based on the transfer matrix
formalism.

Let us denote by (o,7) = (81y+00y8,,) Upyeeey Uy} @ Spin configuration on a
vertical section of the layer along a column of the horizontal planes. We call X, such
a type of section. The symmetrized transfer matrix L associated with (1.1}, which
connects X, with an adjacent X', is given by

L(o, 7|’ 1) = T(o,7) exp [m S (sis! + g ] I vy @1
i=1
with

— 1, «— 1.,
L{o,7)=exp [Q'K; Y (sisipr +wugn) + 71 zse“-‘]

=1 i=}
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and

J,
K, = =% = .
i =T (t=1,2)

We will be interested in the thermodynamic limit n,m — co. Let A, (which is
related to the free energy) be the highest eigenvalue of L and ¥,{o, ) the corre-
sponding cigenvector. If we consider the probability P(o,7) of a spin configuration
(o, 7) on a section X, regardless of the configurations of all other sections, we have
(3.4]

- \Iﬂ(a, T)
Plo,r) = m—lj 2.2

where (¥,,¥,) =3", , Ui(a,7) A consequence of (2.2) is that the pair correlation
function of our model, involving two spins of a section ¥, is equal to the pair
correlation function associated with the distribution W#(o, 7). It follows that the
singularity of A, at the critical temperature 7 is strictly connected to the appearance
of long range order in the principal eigenvector ¥, of L.

Let us write P(o,7) in a Boltzmann form through an effective Hamiltonian
h{a,7) (in which we absorb a minus sign)

p ehloT) 5
(o,7) = iom) 2.3)
where Z(X,) =), , 7). We can write h(o,7) in the form [5]
m m m
ho,7) = Ay Y (8i8i41 + wug) + A D siu; + Ag Z(S.“HH + u;siy)
i=1 i=1 i=1
1 m - )
+ Ay Y 8iui8,0 Ui + As D (sisipn + witigs) + .o 2.4)

i=1
where the expansion is organized according to the range and the number of spins
involved in a coupling. The effective coupling parametrs A; are functions of the
temperature T or of K, and K.

Now, according to the Frobenius-Perron theorem, ¥,(o,7) is unique {up to
constant) and positive. Then, it follows from (2.2) that

¥, (a,7) =ehlon)/? 2.5)
and

Z(E,) = (¥,,¥,). 2.6)

. P .
It m ucaful n congider alen the ?rgbav!!!ty P(g o, -r\ of a cpln mﬂﬁglmtlg“

{a,7),(c’, ') on two adjacent sections £, and £/, regard]ess of the configurations
of all other sections. A generalization of (2.2) givcs [1]

U,(o,7}L{o,7lo’, T \W, (o', T")
(¥, LY,y

Plo,7;0', 1) = 2.7)
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where

(U3, L¥,) =D > ¥y (o,7) Lo, 7lo", 7)¥ (', T')

a7 ol 7!

=y Y eMorieh™) = Z(3,, %), 2.8)

o,7 of, 1!

The effective Hamiltonian h(o, ; 0/, 7'} of the lattice £, UX’ can be easily deduced
from (2.1) and (2.5). It follows from (2.7) that h(eo, 7), or the coupling parameters
A,, are determined by the marginality condition

Z P(o,7;0',7') = P(o, 7). 2.9

U“T‘
After the determination of A(o,7), A, is given by

_ Z(%,, %)
A= —Z5 (2.10)
Of course (2.9) and (2.1G) do not reduce the complexity of our problem. However
we will refer us to them in our discussion of appropriate approximate procedures.

In order to have a problem that can be dealt with, we will consider approximate
descriptions k(e 7) of the effective interaction h(eo, 7), where cnly a finite number
of couplings are present. To fix the ideas, we will take, as an example

h(a, T} = A, Z(3£5i+1 +uiuiy) + Kz E Sitty

i=1 i=1
m

+ Ay Z(siu£+1 +us) 242 SiUi8 i Uigy (211)

i=1 i=1

Formally, the structure of A({c, ) is obtained by truncating the expansion (2.4).
However the couplings A; will be, in general, different from the parameters A;
(i=1,...4). As a matter of fact, with the fixed structurc (2.11), the actual values of

the A; will depend on the particular procedure by which (2.9) will be approximately
satisfied.

Let us introduce
‘T’do,r):ekmr}ﬂ ZD =(l’il"-f,1) ZN=(;I}1,LE;1) (2.12)

and the probability distributions

o \5‘2(0,7)
Pplo, 1) = Bl 3 Tl A
ZD

\il(a,T)L(a,ria’,r’)\‘ﬁl(a’,r’)
Zn '

PN("’ T3 0", TI) =
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A particular recipe, by which the parameters A; can be determined, is given by the
requirement to obtain the best approximation to A,. This is the standard variational
method, which starts from the rigorous inequality

A, (2.13)

SV
n

valid for every choice of the A, and considers

u =A, <A, (2.14)
Aj

i, =
Na|2 1

5
{
This approach gives preference to the actual numerical value of A,. As a matter
of fact, we are more interested to its analytic structure. So it is useful to see the
meaning of the variational method from the point of view of our previous general
discussion.

Let us denote by {...}), and {...}, the expectation values calculated through
ﬁD(a, r) and IBN( o, t;0', '), respectively. The necessary condition for a maximum
of Zy/Zp

— = =0 (i=1,...,4) {2.15)

leads to [5]

5i8; = 18485 y A5l = A8y
{8i8ip1tp = (Sisiyidne (Sitip)p = (s;uipdn 216)

{s;iug)p = (8;u) s (S£Ui55+1"i+1)n = (Si“£5i+1u;+1)N

o = {wu )y (S0 p = (8858 )-

So we see that the full condition (2.9), which leads to the equality, on X, of all
the correlation functions associated with P(o,7) and P(o,7;0',7'), i8 renlaced in
the standard variational method, by an approximate margmahty requu'ement Wthh
involves only a finite number of short distances and low order correlation functions.

A consequence of the above remark is that (2.14) can be a reliable procedure, if
we are far from the critical point, since then large distances and high order correlation
functions have a negligible role, so that we have an effective reduction of the full set
of conditions imposed by (2.9). If, on the other hand, we are near T, there is no
trace in (2.14) or (2.16) of the physical and mathematical mechanism of a second-
order phase transition. Large distance correlations on £, and ¥, U X/ having the
same behaviour, are out of the content of (2.16).

However, when T is near T, an alternative procedure for the determination of
the parameters A; can be formulated, which allows us to overcome the difficulties
of the standard variational method when a large number of degrees of freedom are
effectively involved.

First of all, in order to be sure that we are analysing the model for T near T,
(as a matter of fact we will consider T > T_), we do not take the A as completely
free, but impose a constraint in such a way to be sure that (o, ~r) leads actually

(by symmetry (u;u;,
4]
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to large distances correlations on ¥, and £, U /. After this, the crucial problem
is to reduce the full condition (2.9) to some equations involving only the relevant
quantities associated with a second order phase transition.

From the analytic point of view, the critical point is characterized by a singularity
in A, at T.. A consistent description of this situation, when we consider the ratio
Zn /Z p Wwith an effective Hamiltonian h having large distance cormelations, would
require that the singular points of Z N and Z p be coincident. Now the relevant
quantity which is responsible of the singular behaviour is the correlation length. Then,
on the basis of the above natural analytic requirement, we are led to the marginality
condition that P5(o, ) and Py(o,7;0’,7') have the same correlation length. Due
to the fundamental and unique role of this quantity when T is near T, we sum up,
with the correlation length equality (CLE) [1], a relevant aspect of (2.9) for T near
T,

in generai, some residuai parameters, which we caii A’,, wili not be fixed by the
CLE equation. Further independent marginality conditions are then needed. How-
ever, having satisfied the crucial large distance condition, we can come back to the

variational inequality (2.13) and fix the residual ;l:n through

sup 2. @.17)
{An} Zp
In this way we arrive at a constrained maximum problem, with the CLE imposed on
the numerator ZN and denominator Z p of the classical Rayleigh-Ritz variational
method (RRVM). So, some kind of short range marginality conditions, compatible with
the CLE equation, will be also satisfied.

This approach will be completely developed in the following sections.  After
the determination of the A}, we calculate the quantity to which we have essentially
addressed the full condition (29), that is the correlation length along a vertical section
X, which allows us to obtain the critical curve of our model.

As is well known, there are other variational approachs in statistical mechanics,
which do not make use of the transfer matrix formalism. A classical procedure, which
allows one to obtain closed form approximations, is the cluster variation method (CvM)
(see, for example, [6,7] and references therein). However also in this approach we
have a situation like that of the unconstrained RRVM; in principle the CVM approx-
imations are reliable in the absence of long range correlations [7]. As a matter of
fact, the Kikuchi version of the CvM, in the case of the two-dimensional square Ising
model, gives the same approximate critical point as the standard RRVM [6]. On the
other hand, in this case, the CLE equation allows us to obtain the exact correlation
length and then the exact critical point [1].

3. The trial effective Hamiltonian on a vertical section of the layer

Our explicit calculations are made by introducing, on a section ., the trial effective
Hamiltonian

hy(o,7) =24 (sisi4; + uiriyy) + 2B (s + %5ip)

i=1 =1

+2cz s,-'u,- (3'1)

i=1
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which is modelled on the original Hamiitonian H, except for the effective coupling
2B, which takes into account in the simplest way of the mew types of couplings
resulting from the summation over the spin configurations on all the other sections.
A preliminary analysis of the case B = 0 was made in [1]. We will see that the
effective coupling B will have an important role.

As in (2.12), we associate with h,(o, 7) the vector

U,y (a,7) = hlen)/2 (3.2)
and the probability distribution

¥3i(o,7)

= 3.3
(Vs ¥10) ¢

Ppo,7) =

By making use of the transfer matrix formalism, we give the correlation length £
of IBD, as a function of the parameters A, B and C.

The fonction l’ffft X {(o,7) can be written in terms of a transfer matrix
t(sy, 84|58}, 55) which connects two adjacent segments of the vertical section X,.
We have the 4 x 4 matrix

t(sl,’"zls;,s’z) = (51$‘92lt|32!3;)
= eC1% exp (2A(s,8] + 355%) + 2B(s, 55 + 5,8))) 1%, (3.9)

Since ¢ commutes with the parity operator, its eigenvectors have a definite parity. As
a consequence t splits into two independent 2 x 2 blocks. The eigenvalues associated
with the positive parity are given by

e’ cosh4(A+ B) + e"*“ cosh4(A— B)

+ {[e* cosh4{A + B) — e~ %€ cosh4(A — B)]® + 4}1/2 3.5)
while those of negative parity are

2¢?C sinh 4(A + B) (3.6)
and

2¢~*“sinh 4(A — B). G.7)

We will call A, the highest eigenvalue with positive parity (this is given by (3.5) with
the plus sign), and X, the highest eigenvalue with negative parity. In the region
T > T, the correlation length £ is given by [§]

1 A
3 = log }—: (3.8

For T < T, we must have A, = A,.
Now, a ferromagnetic behaviour of our trial Hamiltonian demands that

X, = 2e2%5inh 4(A + B). . (39
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Furthermore we require that A be positive and such that
A>|B|. (3.10)
From (3.7) and (3.9) we deduce also
2C+4B>0. (3.11)
For T > T, but near T, A\, and XA, must be nearly degenerate. From (3.5) and
(3.9) it follows that this happens when A or B, or both are very large and positive.

However (3.10) demands that, in any case, A must be large and positive, with

lim A= 4occ. (3.12)

T—=T!

The effective coupling A is the relevant parameter of our trial Hamiltonian ﬁt(a, 7).
It is useful to introduce the following notation

2= e—24 w=e2B = o—C
(3.13)
A = E’,2(:'4-4(»1-”5‘);1 Ay = eZC+4(A+B)52
We have then
Moh
N %,
_ 1 +w4z4+74(w4+ 24)+ {[1 +w424—"y4(w4+z4)]2+ 1674w4z4}1/2
- 2(1 — wiz?)
(3.14)
For T near and above T, z is small and positive, with
Iim z=0 315
and
X
lim, ii =+1 (3.16)

L]

4, The induced probability distribution on two adjacent vertical sections

Now, according to the general discussion of section 2, we fix attention on the proba-
bility distribution
¥,,(a, 7} L(a,7lo!, 7)), (0", ™)

Prlorricsr) = ST
1t 1t

@.1)
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which is induced on two adjacent sections X, an T}, by the trial effective Hamiltonian
h(o, 7).

From (2.1) it follows that with this distribution is associated the 16 x 16 transfer
matrix

(515 52! 83’ 34|£|3’1, 3;’ Sl3’ 3’4)

= 2-(3]552,3:% 34)

4
cexp((A+ ) D sisl + Bloysh + sysh  sosh + 5))
i=1

x 1(s], 55, 8%, s4) 4.2)
with
1(8y, 895 83,84) = exp (3(C + 1 K,) (5,5, + 535,) + S K, (5,5, + 5583)) .

We will analyse the properties of £ which are relevant for our approach.

First of all, by introducing 2 proper orthonormal basis, the operator £ splits in
the direct sum of two 8 x 8 matrices, which we call £+ and ¢~. These give the
eigenvectors of £ with parity +1 and -1, respectively.

‘Then, our probiem is 10 caiculaie the highest eigenvalue of £+, which we cail n,,
and the highest eigenvalue of £~, which we call n,. From these we can deduce Z Nt
and the correlation length on £, U X associated with (4.1).

By exploiting the other symmetries of £ (which are related to the exchange of s,
with s, and of s; with s, or (s,,s,) with (s5,s,)) we have that n, is the highest
cingenvalue of a 5 x 5 matrix, while 7, is the highest eingenvalue of a 2 x 2 matrix.

It is useful to write

M =exp(4(A+ B)+2C+ K, +4K,) 7, 5. 4.3)
By making use of the notation (3.13) and of the following definition
= e—2K1

2 vy = e Ko/ @.4)

we obtain 7, in the form
Ty = %(1 - Vl‘-"’gzz){l + Vl(wz)g + Vl('YVz)z(Wz + Vlzz)

+ [(1 + v (w2)? = (y1)% 0 (w? + 1429))? + lﬁ(ﬁvlvzzw)z]llz}
@.5)

The most difficult part of the calculations is the determination of 7, which is the
highest eigenvalue of the 5 x 5 Hermitian matrix h_ , given by

hy =14 viwts? hip = 2(vwz2)? hig = 2(v vy ywz)?

his = 2v(vy7w2)? s = 20 0yywz(1 4 vw’st) hyy = vihy

hog = v hy3 hog=hy hys = vyhys has = vivyy'(w? + vi2*) (4.6)
hsy = viv2hyy has = 207 (vy7) wz[w? + 1 2%] hyy = haafv}

hys = has /vy hgs = 2hy5 + v (17)H(w? + 1 28)(1 + vjw?z?)
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However, since we are interested in T above and near 7., where z is small and
positive (see (3.15)), we can calculate 7, in an almost analytic way, by making use of
the standard perturbation theory. This leads to an expansion of 7, in powers of z?

=14 a122+ a2z4+aazs+a4zs+--- 4.7

where the coefficients a; are functions of w,~,v,,v,. We will see that, in order to
develop our approach, we need at least terms of order of z°. Except a, and a,,
the other coefficients are given by cumbersome analytic expressions, which have been
determined by making use of ‘Mathematica’ [9].

From (4.5) we deduce easily an analogous expansion of 7,

o= 14 b 22 + bz +by2b 40,254 - (4.8)

It turns out that b, = a,. We have, as in (3.16),
lim == =1. 4.9)

For 2% # 0, we have a splitting of this degenerate eigenvalue which, however, appears
at the order z1,

5. The spectral gap equality for T near T,

We call log 7, /5, and log A, /), the spectral gaps of the transfer matrices £ and ¢.
The basic equation of our approach is the spectral gap equality, which we write in
the form

Ay My
- = —. 5.1
Az ™ ¢
For T > T, (5.1) is equivalent to the correlation length equality for the distributions
Pp,(o,7)and Py, (o,7;0',7'). For T £ T_, we must have A, /A, = n,/n, =1,
according to the mechanism of the spontaneous symmetry breaking. It is useful to
write (5.1) in the form

Mo (5.2)

A2 n2

We will study this equation for small values of z.
From (4.9), (4.10) and a; = b;, we deduce

l-‘.il

L=tz 2 m2® 4 5.3)

Rl

We make an analogous expansion for Xl / 12. From (3.14) we have

=14v2 vz 4+ (5.4)

h-?ll'-'}d!
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We note that the expansion of 3\, /7\2 involves only powers of z%. On the other
hand, in (5.3) there generally appear odd powers of 22, after the term r z*. Then,

before imposing (5.2), we implement the trial Hamiltonian ?lt(O’,T) by requiring
that, at least for T near T, %, /7, and A, /A, have the same analytic behaviour as
functions of our relevant parameter A. So we are lead to the equation

rolw, ¥, by, 1) = 0. (5.5

It is useful to see the meaning of (5.5), with regard to the discussion in section 2.
Starting from the induced distribution Py, (o, 7;0’, 7") given by (4.1), we come back
to the section £, and consider the marginal Hamiltonian h)(o, 7) given by

D 3 Budarriolr) 5:6)
—_————— = Nt g, T,0,7T ). .
(‘I’it,‘l’h) o, r!

Now, as it was expected, 71;(0, 7) has a general structure different from that
of E,(a,‘r). There are in E;(a,r) many couplings that are absent in th(cr,r).
Therefore the equation (o, 7) = h,(o, ), equivalent to (2.9), cannot be satisfied.
However, as long as we fix the attention on the correlation length and we are near 7T,
we can describe k/(c,7) through an equivalent effective Hamiltonian %/ o having
the same spectrai gap (log #,/7,) and a small number of effective couplings. Now,
if we impose (5.5), the equation (5.3) can be reproduced up to the order z® through

an h! .z having the same structure of h,(o, 7).
In order to analyse (5.5), which can be considered as a constraint between the
parameters B and C, it is useful to introduce the quantity e such that

€ =yw with 0<e< 5.7

due to (3.11). Then, (5.5) can be written in the form of a cubic equation in the
variable w?. It turns out that there exists one and only one solution of this equation
which is positive and continuous for €,v,,v, € (0,1). The value of the parameter
w, so determined, will be denoted by w". It is a function of ,v,, v,, for which we
have

0 < w(e,v,1y) < 1. (5.8)

Some typical behaviour of w*, as a function of e, is shown in figure 1.

We can see now the role of the coupling constant B. Without this parameter,
(5.5) cannot be satisfied.

Having implemented our trial Hamiltonian %,(c, 7), we proceed to impose the
condition (5.2). From (5.3), (5.4) and (5.5) we obtain

24[Cu(~‘3s V1, U) + cye, V11V2)z4] =0 (3.9
where

cole, vy, vp) = ri(w, e, vy, 1) — v (W7, €)
cole, v, 1) = ry(w™, e, 1, 1) — v3(wW", €).
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0.6

w'(e.K,0)

0 0.2 0.4 0.6 0.8 ' 1

Figure 1. The solution w* of (5.5) as a function of «, for p= 1.

It is useful to consider (5.9) as an equation for 2. As we see, we always have the
solution z_, = 0 (that is A = +o0). However (5.9) can also have a solution, which
we call z4,, Such that zy, 1 posiiive and smail.

In order to state the existence of z,,, we make use of the parameters K = K|

and p = K,/K,. Then, we consider the ¢; as functions of e, K, p. As we see from
(5.9), the existence of z,, is controlled by the quantity cy(e, K, p).
__ Now, for fixed p, cy(e, K, p} has the following property: there exists a value
K(p) of K, which is unique, such that for X > K(p) cy(e,K,p) is nega-
tive for every £ € [0,1]; for K < K(p), but near K(p), there is an interval
I(K,p) = (e4(K,p),e,(K,p)) of ¢, with 0 < £,(K,p) < &,(K,p) < 1, such
that for € € I( K, p), ¢o(e, K, p) is positive, while for e g I( K, p) is negative. The
e;,{K,p) (i = 1,2) are the unique solutions of the equation

cole, K,p) =0 (5.10)

for K < K(p). The difference e,( /', p) — e,( K, p) goes to zero as K — K{p), 50
that

lim e,(K,p)= Ilim e,(K,p)= E(K(p)) =E. (5.11)
K—K(p) K—K(p)

Then, for K near and below K(p) and ¢ € I( K, p), ¢o(e, K, p) is positive and
smail.

For fixed p, it can be concluded that there is a unique set S in the (K,e¢)
plane, where cy(e, &, p) is as small as we want (positive or negative). We can write
S = I x I, where I is an interval of values of K which is a neighbourhood of
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K(p) , while I is an interval of values of ¢ , which is a neighbourhood of . A
typical behaviour of ¢,(e, K, p) is shown in figure 2, while typical regions in the
(K, <) plane, where cy(e, K, p) is positive, with the boundary determined by the
e;( K, p), are given in figure 3.

0.0050
p=t1 p=1 b p=1

- K=0.310 : K=0.311 . K=0.312
0.0025 | r o
/N :

0 -
2 [ [ C
x : [ [
2 -0.0028 | L -
[} - o -
3 L -
-0.0050 F - -
-0.007 | s -
-0.00 L P W P P | B [ 0 . . PRV
: ) 0.5 10 0 05 10 0 0.5 1.0
£ £ £

Figure 2. The behavi%r of co in (5.9), as a function of «, for p = 1 and three values
of K, which inclede K(1)=0.311.

1.2

08 -

0.6 -

0.2 -

0.2 Q.3 0.4 o}
K

o L
¢ 0.1

Figure 3. The domains in the (e, K') plane, for three values of p, bounded by the e
and K axis and by the continuous lines, where ¢, is positive. The dashed line breaks
the continuous curves into two branches, which give the solutions ¢y and ¢; of (5.10).

Now, (5.2) can be satisfied by small values of 2, only if (K,¢) € S. We can say
that for ( K',e) € S, we are in a neighbourhood of 7, (or K'). Furthermore we have
that ¢,(e, K, p) is distinct from zero at the point (K(p},E). In fact it turns out that

g = ¢,(Z, K(p), p) i finite and negative. This function of p is given in figure 4.

So we can conclude that there is a point (1\ (p),%) in the (K, e) plane, which

is unique, such that there is a neighbourhood 5 of (K(p),€) where (5.2) can be
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Figure _;4. The coefficient cg. of (5.9), as a function of p, when calculated at £ = € and
K = K(p}.

hich can be obtained through (5.9). Furthermore

(§ N hag nnl\; one accentahle flp non-nepative)
Cepia DONn-Negatne;

satisfied by small values of z,
for KK > k'fn\nnd \E

FLV S S TS {353 \4;,-..-,

solution given by z, (e, K,p)=10 __This type of solution exists also for K < K(p),
g I(K, p). However for K < K(p), there is also a positive small solution

- (_cole Ko o)\
z4,(e, K, p) = (—m) (5.12)

w
S,

provided € € I( K, p).

From the previous results we deduce that for K > K ( 2}, we are in the ordered
phase, so that K_ < K(p). For K < K(p), the kind of phase of our system is
related to the value of the parameter ¢. If e ¢ I{ K, p) we are again in the ordered
phase, while if e € I( K, p) we are in the disordered phase.

As we see the spectral gap equality gives a right framework for the analysis of a

second order phase transition. However, in order to obtain an unambigous description

for K < K(p), we have to fix e. The variational method ailows us to complete our
analysis within the above framework.

6. The critical curve and the correlation length, above and near T, along a vertical
section

We come back to the RR quotient of section 2 which, for our trial Hamiltonian, is
given by

(‘Fj‘ﬁ’lULN{I}H) (6.1)
(¥, ¥y,)

In the limit m — oc, we have

~ ~ 1/m -
{_—-—(‘I’J“Lf’")} = 62)
(W ¥y,)
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For K < K(p), we consider the sup of this quantity, with respect to the residual
parameter  not fixed by the spectral gap equality. This is a constrained variational
procedure with equality constraints given by (5.5) and (5.2). It is equivalent to some
marginality condition at short distances, but not to the full set of short distance
equations in the first line of (2.16).

Now, for K < K{p), but near K(p), we can write

iz

Al
‘” = 1 :.__:_z_ K, 6.3
(u1u2)2 ( +1 v v 22 ‘ (E p)) ©3)

where z*(e, K, p) is the non-negative solution of (3.9). This equation is obtained by
expanding 7, /'Xl in powers of z? and by taking the leading term.

So we see that the sup of 7, /X, automatically selects the solution z (e, K, p)
given by (5.12), so that

1

™ 1 4(evy1y)? ( cqle, Kap))’
sup — = sup 14+ - 6.4
:E(Ol?l) Al eel(K,p) (vy1p)? [ 1~ v vie? c,(e, K, p) ©4

The last sup gwes for K < K (p) a stnctly posmve value to z“(e K, p) and it
allows to fix in a uniquc way the value of ¢ , where the maximum is attained. We

denote this values by e*( K, p). For K < K(p), but near K(p), we can write
e*(K,p) ~ Y&, (K, p) + £5(K, p)). 65)

From (5.11) we have

lim e&'(K,p)=7% (6.6)
K—K " (p)

So, from the above procedure we deduce that, for K < K(p), we are in the
disordered phase, with z having the positive value z4,(e”( K, p), I, p} and such that
lim 2z, (5‘( (_'.p)

')
=y

L ]

0. 6.7)

Then we conclude that the critical point is given by
K, =K(p). (6.8)

Furthermore, for K below and near K, we obtain, from (3.8), (3.14) and (5.4),
the correlation length £( /&, p) along a vertical section

1 47 4 2 (1 - & o 3
5T 7) = - ) z5,(e* (K, p), K, p) (6.9)

where only the leading term has been taken into account, and & is the value of w*
at e = &.

It can be verified that, if the parameters z or 4 are unconstrained and we
consider the sup of n,/X, when they are freely varied, the maximum is attained
always for values of z which are not small. The standard unconstrained variational
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method, giving preference to regions where z is not small, is incompatible with the
mathematical mechanism of a second order phase transition [3] and, as a consequence,
with the CLE condition in the critical region, On the other hand, it can also be verified
that, in the set 5, each of the short distance conditions in the first line of (2.16),
cannot be satisfied separately.

We give in table 1 some values of K _(p) predicted by (6.8). In figure 5 we give
also the critical curve, expressed as an equation

K. = f(Ky.) (6.10)

where the critical value of the vertical coupling is considered as a free parameter in
the range (0, +co).

Table 1. Numerical values of the critical point K.{p), predicted by (6.8), for several
values of p.

4 K

0.0 0.440687
0.2 0.380650
0.4 0.353656
0.6 0.334150
0.8 0.320901
1.0 0.311067
2.0 0,278453
4.0 0.246 777

i«

X 044

0.4

028 [

0‘2‘. 1 1 t !

Figure 8. The critical curve K. = f( K.} of the two-layer Ising film, obtained from
(6.8).

If we denote by

K3 = —llog(v2 - 1) = 0.440687
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the critical point of the two-dimensional isotropic Ising model, we obtain from (6.8)

~d=2
hc

Aim o f(K) = K lim f(KG) = ©6.11)
in accord with the expected rigorous results.

Besides these limiting values, correctly given by our approach, there are no rig-
orous results about the critical curve of a two-layer Ising film. Numerical estimates
of the critical temperature have been obtained in the two particular cases p = 1 and
p = 2. The last case corresponds to periodic conditions in the vertical direction. It
is useful to make a comparison between our predictions and these estimates.

In the case p = 1, that is K; = K, = K, by analysing the high-temperature
series expansion of the susceptibility through the standard ratio or Padé approximant
methods [10], the following value is obtained

(tanh K )gg = 0.3020 + 6. (6.12)

There is also, for p = 1, a result based on the Monte Carlo calculation of the
magnetization [11], which gives

(tanh K )pye = 0.2980. (6.13)

We have a small discrepancy between the two estimates, whose origin has not been
clarified. It has been argued that the uncertainty in the series calculations is bigger
than that quoted in (6.12) [11]. For p = 1, our constrained variational approach gives

(tanh K)oy = 0.30141 (6.14)

which agrees completely with the series estimate.
In the other case p = 2, that is K, = 2/, = 2K, there is only the estimate of
T, deduced from the expansion of the susceptibility {10]

(tanh K, )gg = 0.2692+ 11 (6.15)

while we obtain
C we 0Ob

Yvaina bid waaan

(tanh K)oy = 0.27147. (6.16)

If we were sure of the uncertainty reported in (6.15), then we have a discrepancy,
but very small (~ 0.4%), between the two calculations. It would be interesting to
see what kind of result the Monte Carlo approach gives in this case.

By making use of (5.12), the correlation length £( K, p), given by (6.9), can be
written in the form

1 = 4= + 2&'—4(1 - E‘l) - CO(E‘(}(: p)’ K, P)
£§(K,p) ~ 1—8t ( (%, K., P) ) (K< K) (617

with " K, p) given by (6.5).
Now, for fixed p, as K goes to K., we have that ¢,(£"( K, p), K, p) tends to
zero linearly, so that we obtain
o8

(K, p) = 4 (6.18)
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for K below and near K., where o is a constant which depends on p. From (6.18)
it follows that the critical exponent v, which describes the singular behaviour of ¢
near K, is given by

v=1 (6.19)

in accord with the expected two-dimensional value which is exactly known [8].

The above result raises a problem if there is some contact of our approach with
the renormalization group (RG) method [12]. Eventually, a proper comparison could
be made with the phenomenological renormalization [13] where, in the absence of a
magnetic field, only a thermal field is considered. As a matter of fact, we note that in
our analysis the parameter z has the role of a thermal field, the critical point being
given by the equation z = 0. Moreover, if we refer to the effective Hamiltonians
on £, and X U X/, we can argue that z = 0 (that is A(T_) = oc) gives also the
condition for a fixed point of the renormalization transformations, according to the RG
treatment of the one-dimensional Ising model [14]). However, no scale factor reiated
to RG transformations does appear in our approach. Then, on the one hand, we have
an equation (i.e. (5.1)) for the thermal field, on the other hand the link between this
quantity and the correlation length is obtained through a further equation (i.e. (6.9)).

Coming back to (6.18), we see that the divergence of £(J(, p) at K, is controlled
also by the amplitude o, which can be deduced from (6.17). This quantity, considered
as a function of K, is given in figure 6. As we see, we have a sharp maximum
of o, for a particular value K73  of K, with K3 =~ 0.201. This behaviour of o,
predicted by our approach, is related to a transition from the weak to the strong
coupling regime, which will be discussed in the next section.

0 I 1 PR | L L L i

0 C.4 0.8 1.2 1.6 2 2.4 2.3
Ko

Figore 6. The amplitude o of the correlation length, as a function of K.

7. The weak and strong coupling regimes

A relevant aspect of our approach is that, in the two regions of weak or strong vertical
coupling, the analysis can be made in a complete analytical way and the results can be
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given by simple expressions. In the following we will call simply coupling the vertical
coupling K, which is associated with the interaction between two Ising planes or two
fermionic fields.

In the strong coupling regime we obtain for the critical curve

rd=2
K

VvZ-1 _ 25./2 — 36
m 1 = K Y 00
=0.220343 + 0.207 107e~2K3c 0,161 165~ 4 > 4 ... 7.1y

while, in the weak regime, we have

6v/2-10 2512 - 172
VIZ10 e, 25143

ch=f(ch)=I(g=2— 8 TI{2C+-'.

= 0.440 687 ~ 0.153842\/K,_ — 0.40841K,_ + -- - . (7.2)

From the last equation it follows that there is a singularity at zero coupling, which
is predicted to be of square root type.

We note that, if we give the critical temperature as a function T,(J,) of the
vertical coupling and write, for small J,

1 4.0
1

To(J3) = T(0) x Jy'"

where 3 is the shift exponent [15, 16], we obtain that, in our approach, 1» = 2. On the
other hand, on the basis of the generalized homogeneity postulate [16], the behaviour
near J, = 0 can be described in terms of a crossover exponent ¢, which is associated
with a crossover temperature. It can be argued that ¢ = 1. Renormalization group
arguments [17, 18] give support to this equality and allow us to obtain, as can also be
deduced from dimensional considerations, ¢ = v = 1.75 (the susceptibility exponent
of the two-dimensional square Ising model).

As we see in (7.1), the behaviour of the strong coupling expansion is very different,
being given in terms of very different analytic functions. As a consequence, we can
expect that there is a value of K, around which a transition occurs between the
strong and weak coupling regimes. The probiem is how to characterize this transition
and what its physical implication is.

If we Jook at the critical curve, which is a smooth monotonous decreasing function
of K, there is no signal of such a transition. The situation is different if we analyse
the behaviour of the effective coupling parameters of our trial Hamiltonian %,(¢, ).
We fix the attention on the critical point, where A — +o0, and denote by B, and
C, the values of B and C at this point. In the strong coupling regime we have

5-3 71V2Z -1 .
2B, = K,, — 1o - v2) | 1\/57 22 ok
= K,, + 0.138 959 — 3.084 405e~ 2K 4 ... (7.3)
log(2 (V2 -1
2C. = K, — o8( ({ ))+(—7+5\/§)e"2K’°+---

= K, +0.09411324 0.0710678e~2Ka 4 ... (7.4)

We see that, at the critical point, for large values of the coupling K,  between
the two horizontal planes of our model, the parameters 2B, and 2C,, which describe
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the effective vertical coupling between the two horizontal lines of a section }, , have
nearly the same value of J(, . There is only a small additive renormalization effect.
In this respect, the strong coupling regime exhibits a simple behaviour. On the other
hand, for small K, , with

Vo = log(1 - ¥2)

we obtain

v, 34/7(675+251/2) 231332 + 9
20y \/ T + + 958292

2B, = -3 392 76832 Kot
=0.613974 + 0.649824\/K,. — 4.774 764 K, + - - - (7.5)
and
51/7(19 4 3v2) 6483+/2 — 130 784
=V VE K
2C ot 196 2t 38416 2t
= —1.22795+ 0.32539/K,. +3.165755K,_+ ... (1.6)

Again there appears the square root singularity at K, = 0. But we have a further
relevant phenomenon, which makes the weak regime more complex and interesting.

First of all we note that, for sufficiently small values of K, , the effective vertical
coupling 2C_ involving pairs of nearest-neighbour spins, becomes antiferromagnetic,
while the other vertical coupling 2B, involving the ncxt-nearest-neighbour spins,
remains ferromagnetic. As a consequence some kind of frustration appears near
K,. = 0. However the ferromagnetic component is dominant, in the sense that, for

K,  # 0, we have always
2C_+4B.>0 7.7

in agreement with (3.15), so that the global effective interaction between the two
horizontal lines of a section

2B, Z(s‘-u'—_'_l + u;8;44) + 2C, Z s;uy

i=1 i=1

is ferromagnetic.
The second aspect of (7.5) and (7.6), which is related in some way to the first
one, is the finite value of B, and C_ as K, — 0

= | =Y
2B,(0)= lim 2B ,=- 3
- Tand
(7.8)
2C.(0)= lim 2C.=V,.
e
Thic eaows 14 in in cantenot unth tha naiva avnestatinn that whan tha counline K.
LY IC3ULL 1D Il VUILLIGSL WILLL LUU LAYy LAPLLIGLIVIL LIGL WIHWL Wi Wsupiiing 1: 90

tends to zero, the effective coupling B, and C, both also tend to zero. However, it
happens that

2C.(0) + 4B,(0) = 0 (7.9)
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so that, when the two horizontal planes become uncoupled, the net effective interac-
tion energy between the two horizontal lines of a section ¥, tends to zero. We can
say that the effective vertical coupling of longer range, 2 B_, is always ferromagnetic
and remains finite as K,  — 0%, due to some hysteresis mechanism. This fact, how-
ever, forces the other effective coupling 2C, to become antiferromagnetic, in order
to have a vanishing effective interaction energy when K. tends to zero. The math-
ematical origin of this phenomenon is the equation (5.5), which cannot be satisfied
forw=1 (that s B =0).

From the analysis of the effective parameters, a physical picture emerges, which
is quite different for the weak and strong coupling regime. It is very interesting, then,
to determine where and how the transition between the two regimes occurs. In the
figures 7(a) and 7(b) we give 2B, and 2C, as functions of K,.. Both curves show
clearly an upper and a lower branch associated with the strong and weak regimes,
respectively. The transition from the upper to the lower branch happens in a very
steep way, around the point K3 ~ 0.220, where both the derivatives of 2C.( K,.)
and of 2B_( K, ) get their maximum value. We see also that the tramsition, which
looks like a smoothed jump, starts from the point K7, ~ 0.270 where C, is zero.

1.1

e
~

2¢,

0.8

—
o
A

1
0.4 |

ca

08 -0.4 |

-08
0.7

1 ! L L dntnd

g 0.1 0.2 03 0.4 0.5 0.6 o] 0.1 0.2 Q.3 04 0.5 C.6
Ky ) LY

0.6

Figure 7. The effective coupling parameters 2B (@) and 2C. (»)J at the critical point,
as functions of Kac.

Now we note that, in the interval where the behaviour of both 2B, and 2C,
indicates the above transition from the weak to the strong coupiing regime, we have
also the point Kj. where o, gets its maximum. This maximum is an imitation of a
mechanism analogous to the divergence of the correlation length at the critical point.
It refers, however, to the rapidity o, with which the correlation length diverges at
K. This further phenomenon of the appearence of the maximum, provides us with
a physical means through which, in principle, the transition from the weak to the
strong coupling regime can be detected and located.

For small values of K, , o, is given by

o _3+\/§+ 54 — 38y/2
©T 32 1254

245+196\/§ =
—_ VK, 4+
X (12701+9652\/§+ ] g(\/i—l)) *

=0.137944 4 1.046 83 /T, + -+ (1.10)
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while, in the strong coupling regime, we have

. = 85+ 16v2 69253 K. o-1Ka.
<= T 392 98log(l + v2) ¢
4701v2~ 6928 _,p

LAY

=0.27465 - 0.516 132K, .e™* 2 1 0.101961e 2Kz ... (7.11)

We note that, if we take initially K, = 0, we deduce from the equation [8]
& =2(K" - K) (7.12)

that o = 1/4. Here ¢° = £(K, = 0) and ¢~ 2X" = tanh K.
On the other hand, from (7.10) we obtain

(im0 > 0138 # ol. (7.13)

This result is a physical manifestation of the finiteness of the effective parameters
B. and C_ when K, tends to zero, as expressed by the limits (7.8).

8. Conclusions

The approach proposed in this paper allows us to obtain quite reliable results which,
on the one hand, are under control from the analytical point of view, and on the other
hand are carriers of interesting qualitative physical pictures. This is a consequence of
the particular role of the eigenvector ¥,(o, ) of the transfer matrix, on which we
have focused our attention. From the point of view of quantum field theory ¥,(o, 7)
has the role of the vacuum state. So our results on the effective parameters B, and
C,_ can be useful with regard to the problem of the non-perturbative aspects of the
structure of the vacuum state.

A nhuciral wmintivation af the reliahility
A physical motivation of the reliability of cur approach can be the analogous pro-

cedure followed in the low-energy quantum physics, where simple effective potentials
(harmonic oscillators, double wells, ...) are introduced, in order to obtain a good
description of the low part of the spectrum. As a matter of fact we consider in this
paper, through Tlt(a’,‘r), a kind of effective potential of the simplest form, having
the property to reproduce the energy gap between the ground state and the first
excited state. However, it would be relevant to have, besides the heuristic arguments
developed in this paper, a more rigorous basis with some control on the results. We
will be faced with this problem in future work.

For T > T, besides the correlation length it would be interesting to calculate also
the other important physical quantities, like the heat capacity and the susceptibility.
With regard to the Jatter quantity, we have to introduce a small external magnetic field
and, as a consequence, we need a modification of our trial Hamiltonian, The same
procedure is required for T < T, if we want also to calculate the magnetization.

However, the heat capacity could be determined approximately through the second
derivative, with respect to 7T, of the log of the RR quotient (6.1), which gives an
approximation to the free energy. But, even if 7, and ), are singular at the same
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point, we obtain a poor approximation to the free emergy near the critical point.
In fact, from (6.3) and (6.8) we see that we would obtain a free energy whose
singular part does not satisfy the scaling relation ~ (1/£)¢ [12]). The Rayleigh-Ritz
approximation to the free energy, while allowing us to get stability for K < K(p)
with respect to the residual parameter e, Seems incompatible with the full content of
the scafing hypothesis.

In order to obtain a reliable heat capacity we need an improvement upon the
RR quotient which we have considered. In principle, if we consider the Hamiltonian

! (o, 7) given by (5.6) and the vector

b (o,7) = exp(hi(o,7) ~ Lk, (0, 7))} x (LT )(a,7) @.1)
the ratio
(d)ﬂl-ﬂ L~¢1t) 8.2)
(B10r P10)

would lead to an improved calculation of the free energy [19]). However, we have to
check that the numerator and denominator in (8.2) have the same correfation length.
This problem can be avoided if we consider an intermediate step. Let us write (5.6)
in the form

(‘I‘nan’u) HER!

8.3
(@, 7,) @)

Z Y, (e,7) Lo, 7|o’, 7Y (o', 1) =

ol r!
with

ll’ t)_Ze};:(aiT)_

a,T

Now, to the extent that E;( o, 7) is effectively described by E,(o, 7) as far as we are
concerned with spin configurations having long range correlations, we are led to infer
from (8.3) that

(9, L¥,,)

= =
(4, V1)
1t * 1%
nld o ant calrilatinn Af tha fraa anaroy whan T ic maar T nf
COuUIG 0¢ 3@ more Wllbmu.,l.u Ca:Cujatlion Gi nc iree COUIEY, whlli 4 B Kal 1. Wi

course, the numerator and the denominator in (8.4) have the same correlation length.
This and the other problems mentioned above, as well as the case of higher
dimensions, will be investigated elsewhere.

8.4
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